

P-2A

- Accuracy 0.25%, 0.5%
- Temperature Compensated
- Front Ceramic Diaphragm
- Non-Metallic Wetted Parts for Excellent Corrosion Resistance

Since 197

- Zero and Span Adjustments (4-20mA)
- False System Shutdown Prevention

Typical Applications

- Pharmaceutical Industry
- Chemical Fluid Level Measurement

Specifications

PERFORMANCE

Accuracy at 25 C° (Linearity, Hysteresis, Repeatability): < ±0.25% F.S.....PT73 < ±0.5% F.S.....PT74

Stability at 25 C°:

< ±0.2% F.S.(PT73) < ±0.4% F.S.(PT74)

Thermal Zero Shift: < ±0.02% F.S./ C[°].....PT73 < ±0.04% F.S./ C[°].....PT74

Thermal Span Shift: < $\pm 0.03\%$ F.S./ C^o

ENVIRONMENTAL Operating Temperature Range: -0......70 C° (PP, PVC) -25.....85 C° (PVDF)

Storage Temperature Range: -25.....85 C°

Compensated Range: -40.....135 C^o

Weatherproof Rating(Enclosure): IP65, NEMA4/4X or better

HA

HAWK PT7 series flush diaphragm pressure transmitters and transducers have been designed for measurement of viscous and contaminated fluids at high quality performance, reliability and cost. The semi-flush front ceramic diaphragm design minimizes the dead space in order to avoid the highly viscous medium to clog the pressure sensing element. It's good ideal for the system to require flushing to prevent contamination when changing pressure medium. The non-metallic wetted parts (the parts contacted with the media directly) design let it use for applications where a typical metallic components could not withstand the process media such as acids, chlorine and etc.

Chemical Tank Level Measurement

Chemical Industries

PHYSICAL DATA Housing (Case): 304 Stainless Steel (316SS Option)

Fitting Materials: PP, PVC or PVDF

Ceramic Sensor:

Aluminum Oxide AI_2O_3 (96%) **Note:** For high pressure applications, the fitting should be in metal material with PTFE coating (P>300PSI)

Seal Material:

FPM(Viton), NBR (Buna Rubber), MVQ(Silicone Polymer), CR(Neoprene), EPDM(Ethylene Propylene), FFKM **Note:** The wetted parts including fitting, ceramic sensor and sealing will be contacted with the media directly, please choose the appropriate material complied to your application.

Process Fitting (Connection):

G3/4 (3/4" PF), G1/2 (1/2" PF)- Standard, 1/2" NPT, 3/4" NPT Others on request

Electrical Connector:

Terminal Box to DIN43650 (IP 65) Shutter Type Cable(IP 65) Flexible Cable(IP 65) Female 1/2" DIN(IP 65) M12 Cable(IP 65)

ELECTRICAL DATA

Voltage)

Voltage Output Output Signal (Voltage, 3 Wires): 0-10V, 0-5V, 0.5-4.5V, 1-5V, 1-6V

Power Requirement (Voltage): 15-32VDC (Normal 24VDC,

Load Resistance (Voltage): >10K Ohms

Current Output Output Signal (Current, 2 Wires): 4-20 mA

Power Requirement (Current): 10-32VDC(Normal 24VDC, Current)

Load Resistance (Current):

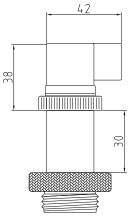
≤(Supply Voltage -10V) / (0.02A)Ohms

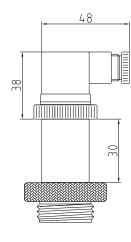
P-2A ISO 9001

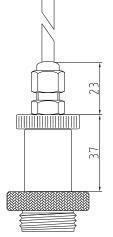
Electrical Compatibility

H

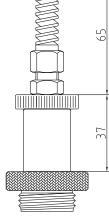
CE-Conformity

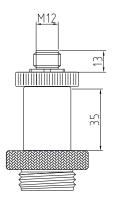

■ 2014/30/EU(EMC)


EN 61326-1:2013


K

Since 1971


Dimensions (mm)




SHUTTER CABLE

Flexible Cable

M12 Conduit

The flushing front diaphragm design let the measuring point closed to the process line in order to minimize the dead space happened

DIN 1/2" FEMALE **DIN 43650 A Flushing Design**

Media Compatibility and Applications

Since 197

Media compatibility must be considered when purchasing a pressure transducers and transmitters, Improper selection and application of the pressure transmitters and transducers could possible cause sensor failure and lead to possible damage or personal injury. The media to which the pressure sensors are going to be in contact with, must have compatibility with the Al₂O₃. In particular the data of weight loss found after a dipping of 80 hours at room temperature in some media have shown a good resistance to HCl (at 30% wt) and HNO₃ (at 60% wt). Therefore the ceramic cell has a very good chemical resistance. But the alumina is instead easily etched by even 1% solution of Fluorine acid (HF). For such applications, you can use HAWK ceramic pressure sensor combined diaphragm seal or the other HAWK Pressure sensors such as stainless steel thin film sensor or diaphragm micro-machined silicon sensor instead. The wetted parts of the transmitter including pressure fitting, ceramic cell and sealing will contact with the media directly. Selecting the suitable pressure fitting material and sealing material is very important.

Please refer to HAWK Corrosion table for detailed information.

Sealing Materials vs Common Applications

Sealing Materials				Сс	omr	non	A	opli	cati	on	Co	ndi	tion	S		
1=Recommended, 2=Satisfactory, 3=Poor, 4=Marginal, 5=Not Recommended A=Available N/N=Not Available	Gasoline, Naphtha	Benzene, Toluene	Aliphatic Hydrocarbon	Alcohol	Ester	Ketones (MEK)	Ethyl Acetate	Water	Organic Acid	Animal/Vegetable Oil	Aromatic Solvent	Oxidized Solvent	High Consistency Alkali	Low Consistency Alkali	High Consistency Inorganic Acid	Cons Dic A
Buna N(Nitile), NBR	1	3	5	1	4	4	4	1	4	1	3	5	2	2	4	2
Fluorocarbon(Viton), FPM	1	1	2	1	4	2	5	1	5	1	1	5	5	4	1	1
Ethylene-Propylene(EPDM), P.C	5	3	5	1	2	1	1	1	5	2	5	1	1	1	2	1
Fluorosilicone, VMQ	4	4	3	1	4	2	3	2	2	3	5	4	1	1	4	2
Neoprene, CR	2	5	5	1	4	3	5	1	4	2	4	5	1	1	2	1

The materials and applications listed are the most commonly used. There are a lot of compound variations designed for specific applications. For demanding applications, please supply all detailed to our application engineers for a recommendation or go to: www.efunda.com

Sealing Materials				Сс	omn	non	Ap	oplio	cati	on	Co	ndit	ion	S					
1=Recommended, 2=Satisfactory, 3=Poor, 4=Marginal, 5=Not Recommended A=Available N/N=Not Available	High Temp Limit CO	Low Temp Limit CO	Steam< 250 (C ^o)	Steam< 120 (C ^o)	Permeation/Vacuum	Fluorescent/Sunlight	Weathering/Ozone	Refrigerant/Freon(most)	Wear/Abrasion	Compression Set	Brake Fluids	Transmission Fluids	Steering Fluids	Fuels/Gasline(most)	Chemicals/Solvents(most)	Petroleum Oils(most)	Dynamic Applications	FDA Compliant	NFS61(Drinking Water)
Buna N(Nitile), NBR	120	-40	5	4	2	4	4	4	2	2	5	2	5	3	4	3	2	А	А
Fluorocarbon(Viton), FPM	200	-15	4	3	1	1	1	3	2	1	4	3	2	2	2	1	1	А	N/A
Ethylene-Propylene(EPDM), P.C	150	-55	4	1	2	1	1	5	2	2	1	3	5	5	2	5	1	А	А
Fluorosilicone, VMQ	180	-60	5	5	4	1	1	1	4	3	3	3	2	1	3	3	3	N/A	N/A
Neoprene, CR	120	-35	5	5	2	2	2	2	2	3	5	3	3	5	5	2	1	N/A	N/A

Scale:psi

Pressure Range

Since 1971

R

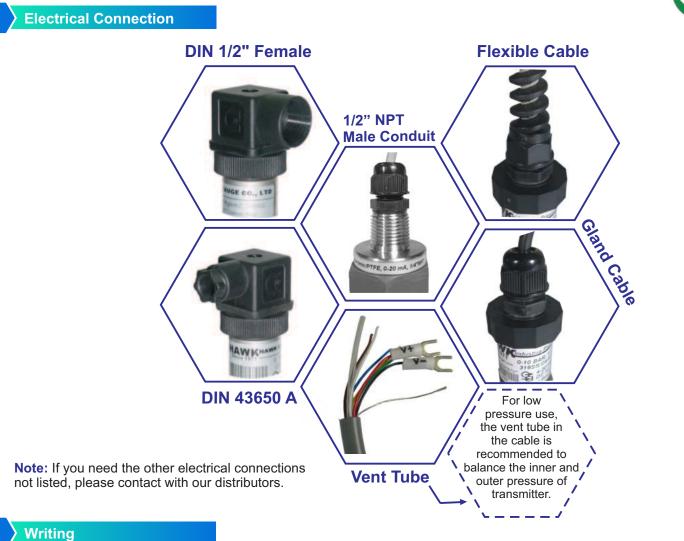
Code	P09	P1	P2	P2C	P 3	P4	P5	P5A	P6	P 7	P7A	P 8	P8A	P 9	P9A	P10	P11	P12	P13
Range																			3000
Overload	20	30	60	100	120	200	300	320	400	600	800	1000	1200	1500	1600	2000	3000	4000	6000

Code	P14	P141	P15	P16	PV1	PC1	PC2	PC3	PC4	PC5	PC6	PC7	PC8	PC9		 		
Range	5000	6000	7500	10000	VAC/0	VAC/15	VAC/30	VAC/60	VAC/100	VAC/150	VAC/160	VAC/200	VAC/300	VAC/600				
Overload	10000	12000	15000	20000	15	30	60	120	200	300	320	400	600	1200				
																	Sc	ale:bar

Code	R1	R09	R2	R3	R4	R5	R6	R7	R8	R9	R10	R11	R12	R13	R14	R15	R16	R17	R18	
Range																				
Overload	0.8	1	1.2	2	3.2	4	5	6	7	8	10	12	14	20	32	40	50	60	70	

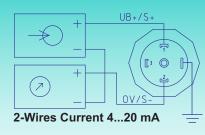
Code	R19	R20	R21	R22	R23	R24	R25	R26	R27	R28	R29	R30	R31	R32	RV1	RC1	RC11	RC2	RC21
Range	40	50	60	70	100	160	200	250	300	350	400	500	600	700	-1/0	-1/0.6	-1/1	-1/1.5	-1/2
Overload	80	100	120	140	200	320	400	500	600	700	800	1000	1200	1400	1	1.2	2	3	4

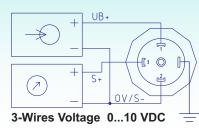
Code	RC22	RC3	RC31	RC4	RC41	RC5	RC6	RC62	RC7	RC8	RC9		 						
-											-1/40			1	1	1	1	1	-
Overload	5	6	7	10	12	18	30	38	48	60	80								


																		<u>S</u>	cale:k	<mark>g/cm²</mark>
Code		G09							1											
Range	0.4	0.5	0.6	1	1.6	2	2.5	3	3.5	4	5	6	7	10	16	20	25	30	35	
Overload	0.8	1.0	1.2	2	3.2	4	5	6	7	8	10	12	14	20	32	40	50	60	70	

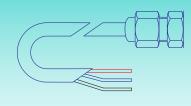
Code	G19	G20	G21	G22	G23	G24	G25	G26	G27	G28	G29	G30	G31	G32	GV1	GC1	GC11	GC2	GC21	
Range																1 - C	1		-1/2	
Overload	80	100	120	140	200	320	400	500	600	700	800	1000	1200	1400	2	-1/1.2	-1/2	-1/3	-1/4	

Code	GC22	GC3	GC31	GC4	GC41	GC42	GC5	GC51	GC6	GC63	GC7	GC8	GC9				
Range	-1/2.5	-1/3	-1/4	-1/5	-1/6	-1/7	-1/9	-1/10	-1/15	-1/20	-1/24	-1/30	-1/40				1
Overload	-1/5	-1/6	-1/8	-1/10	-1/12	-1/14	-1/18	-1/20	-1/30	-1/40	-1/48	-1/60	-1/80				

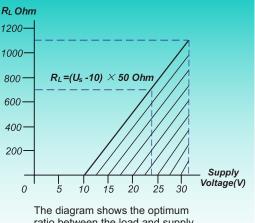

Note: If you need the other ranges not listed, please contact with our distributors.



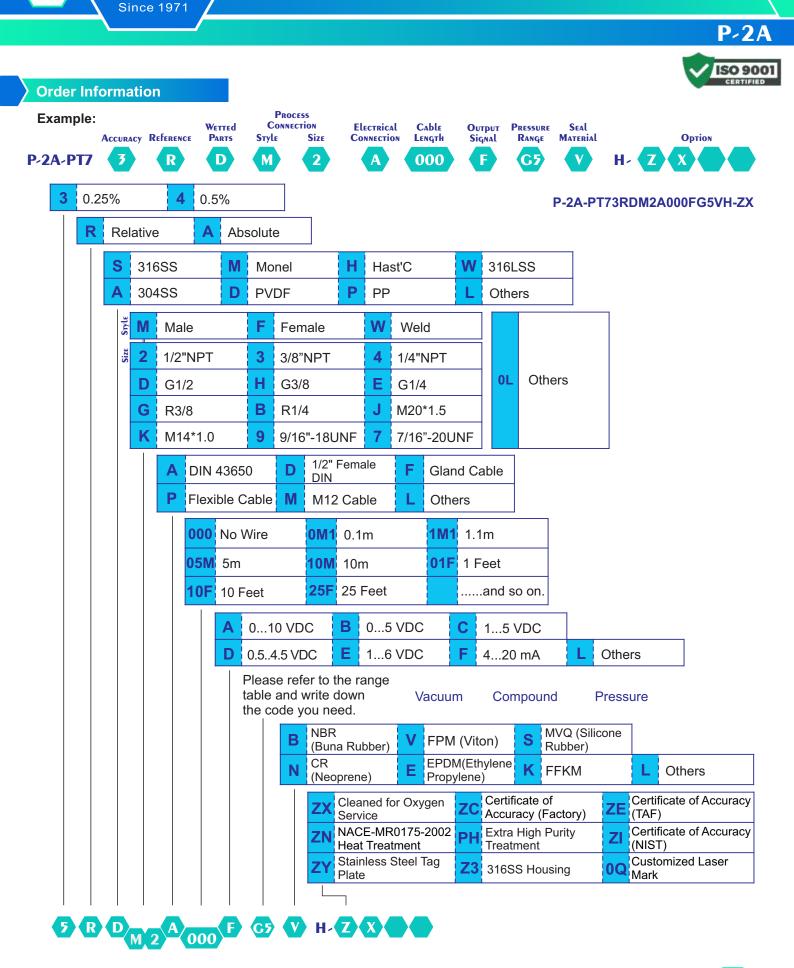
writing


DIN Connection

Since 1971



Cable Connection



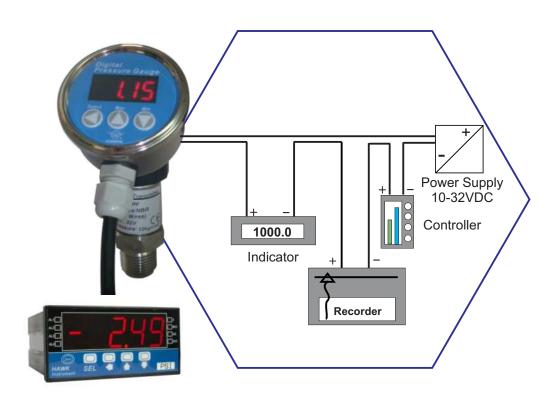
RED-SEE TABLE WHITE-SEE TABLE BLACK-SEE TABLE

Output	Red	Black	White
Voltage	+ V Supply	- V Supply	Output
Current	+ V Supply	- V Supply	Grounding

ratio between the load and supply voltage of the 4-20mA transmitter. For a correct use, any combination of load resistance and supply voltage, choose the slant line area.

Accessories

Plug-in Digital Indicator


Since 1971

Digital indicating can be used with the transmitter for your system. It is ideal for all industrial applications when a local pressure reading and a remote signal transmitter to a programmable logic controller or other.

P-2A

ISO 9001

High Level Current Wiring Connecting (4-20 mA 2 wires Loop Power)

42.5 mm

E

100.5 mm

ŐČ

The pressure transmitter 4-20mA output units are designed to have current flow in one direction only. The maximum supply voltage for 4-20mA current output transmitter is 32VDC. The minimum supply voltage is dependent upon the loop resistance of the circuit. The load limitation chart shows the minimum supply voltage required for given loop resistance. We suggest that the electrical shield should be connected to the system loop circuit ground to improve electrical noise rejection. For minimum noise susceptibility, avoid installing the transducer and transmitter's cable in a conduit that may contains a high current AC power cables. If possible, avoid installing the cable near inductive equipments.

P-2A

Limited Warranty and Liability

HAWK GAUGE CO.,LTD warrants all its mechanical instruments to be free from defects in materials and workmanship. HAWK agrees to repair or replace any thermometers if returned to our factory, transportation charges prepaid, and after which examination reveals is to be defective due to faculty workmanship or material. This warrant should not apply to subject to the following terms and conditions:

- **A.** The product has not been subjected to misuse, neglect, abuse , accident, incorrect mounting, improper use or misapplication such as negligence, accident, vandalism, shock or vibration.
- B. The performance of any system of which HAWK's products are a component part.
- **C.** The product has not been exposed to any other service, range or environment of greater severity than that for which the products were designed.
- D. The product has not been altered or repaired by anyone except HAWK GAUGE or its authorized service agencies.
- E. The serial number or date code has not been removed, defaced or changed.
- F. The actual pressure&temperature occurring exceed the values specified for HAWK Thermometer.

Unless otherwise specified in a manual or warranty card, or agree to in a writing signed by HAWK GAUGE office, HAWK Thermometer products shall be warranted for one years from the date of sale.

This warranty is in lieu of all other warranties expressed or implied, and of all obligations or liabilities on its part for damages including but not limited to consequential damages, following the use of misuse of instruments sold by it. No agent is authorized to assume for it any liability except as set forth above.

Note

HAWK GAUGE CO.,LTD reserves the right to make product improvements and change its specifications at any time stated throughout this brochure without notification. Please contact the factory on all critical dimensions and specifications for verification.

HAWK GAUGE is not expert in the customer's technical field and therefore doesn't warrant suitability of it's product for the application selected by customer.

Data Sheet No: MKDP2APT7A1-E